• Dead zones are low-oxygen, or hypoxic, areas in the world’s oceans and lakes. Because most organisms need oxygen to live, few organisms can survive in hypoxic conditions. That is why these areas are called dead zones.

    Dead zones occur because of a process called eutrophication, which happens when a body of water gets too many nutrients, such as phosphorus and nitrogen. At normal levels, these nutrients feed the growth of an organism called cyanobacteria, or blue-green algae. With too many nutrients, however, cyanobacteria grows out of control, which can be harmful. Human activities are the main cause of these excess nutrients being washed into the ocean. For this reason, dead zones are often located near inhabited coastlines.

    Understanding the eutrophication process provides the clearest picture of how and why dead zones develop.

    Causes of Eutrophication

    Eutrophic events have increased because of the rapid rise in intensive agricultural practices, industrial activities, and population growth. These three processes emit large amounts of nitrogen and phosphorous. These nutrients enter our air, soil, and water. Human activities have emitted nearly twice as much nitrogen and three times as much phosphorus as natural emissions.

    Different regions of the world emit different levels of these nutrients. In developed countries, such as the United States and nations in the European Union, heavy use of animal manure and commercial fertilizers in agriculture are the main contributors to eutrophication. Runoff from large agricultural fields enters creeks and bays because of rain or irrigation practices.

    In developing countries of Latin America, Asia, and Africa, untreated wastewater from sewage and industry mainly contribute to eutrophication. Factories and sewage facilities are less regulated than they are in developed countries, and sometimes wastewater is simply dumped into creeks, rivers, lakes, or the ocean.

    Atmospheric sources of nitrogen also contribute to eutrophication in some areas of the world. Fossil fuels and fertilizers release nitrogen into the atmosphere. This atmospheric nitrogen is then redeposited on land and water through the water cycle—rain and snow.

    The Chesapeake Bay, on the East Coast of the United States, has one of the first dead zones ever identified, in the 1970s. The Chesapeake’s high levels of nitrogen are caused by two factors: urbanization and agriculture. The western part of the bay is full of factories and urban centers that emit nitrogen into the air. Atmospheric nitrogen accounts for about a third of the nitrogen that enters the bay. The eastern part of the bay is a center of poultry farming, which produces large amounts of manure.

    Since 1967, the Chesapeake Bay Foundation has led a number of programs that aim to improve the bay’s water quality and curb pollution runoff. The Chesapeake still has a dead zone, whose size varies with the season and weather.

    Eutrophication and the Environment

    The eutrophication process has severe environmental impacts. Dead zones result from these impacts, which include algal blooms and hypoxia.

    Algal Blooms
    Phosphorous, nitrogen, and other nutrients increase the productivity or fertility of marine ecosystems. Organisms such as phytoplankton, algae, and seaweeds will grow quickly and excessively on the water’s surface. This rapid development of algae and phytoplankton is called an algal bloom. Algal blooms can create dead zones beneath them.

    Algal blooms prevent light from penetrating the water’s surface. They also prevent oxygen from being absorbed by organisms beneath them. Sunlight is necessary for plants and organisms like phytoplankton and algae, which manufacture their own nutrients from sunlight, water, and carbon dioxide. Oxygen is necessary for almost all aquatic life, from sea grasses to fish.

    By depriving organisms of sunlight and oxygen, algal blooms negatively impact a variety of species that live below the water’s surface. The number and diversity of benthic, or bottom-dwelling, species are especially reduced.

    Because algae dominates the aquatic ecosystem, algal blooms are sometimes referred to as “red tides” or “brown tides,” depending on the color of the algae. Red tides actually have nothing to do with tides. They also have nothing to do with algae. The organism that causes red tides is a bacteria, called cyanobacteria.

    Algal blooms also cause larger-scale problems, such as human illness. Shellfish, such as oysters, are filter feeders. As they filter water, they absorb microbes associated with algal blooms. Many of these microbes are toxic to people. People may become sick or even die from shellfish poisoning.

    Algal blooms can also lead to the death of marine mammals and shore birds that rely on the marine ecosystem for food. Wading birds, such as herons, and mammals, such as sea lions, depend on fish for survival. With fewer fish beneath algal blooms, these animals lose an important food source.

    Algal blooms can also impact aquaculture, or the farming of marine life. One red tide event wiped out 90 percent of the entire stock of Hong Kong’s fish farms in 1998, resulting in an estimated economic loss of $40 million.

    Algal blooms usually die soon after they appear. The ecosystem simply cannot support the huge number of cyanobacteria. The organisms compete with one another for the remaining oxygen and nutrients.

    Hypoxia occurs when algae and other organisms die from lack of oxygen and available nutrients. Hypoxia events often follow algal blooms. The cyanobacteria, algae, and phytoplankton sink to the seafloor, and are decomposed by bacteria. Even though oxygen can now flow freely through the aquatic ecosystem, the decomposition process uses up almost all of it. This lack of oxygen creates dead zones in which most aquatic species cannot survive.

    The Gulf of Mexico has a seasonal hypoxic zone that forms every year in late summer. Its size varies from fewer than 5,000 square kilometers (1,931 square miles) to approximately 22,000 square kilometers (8,494 square miles, or the size of Massachusetts). Concern over its increasing size led to the formation of the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force in 1997. Its mission is to reduce the five-year running average of the Gulf of Mexico dead zone to less than 5,000 square kilometers.

    The Baltic Sea is home to seven of the world’s 10 largest marine dead zones. Increased runoff from agricultural fertilizers and sewage has sped up the eutrophication process. Overfishing of Baltic cod has intensified the problem. Cod eat sprats, a small, herring-like species that eat microscopic zooplankton, which in turn eat algae. Fewer cod and more sprats mean more algae and less oxygen. The spreading dead zones are starting to reach the cod’s deep-water breeding grounds, further endangering the species.

    The Baltic Sea has become the first “macro-region” targeted by the European Union to combat pollution, dead zones, overfishing, and regional disputes. The EU is coordinating the Baltic Sea Strategy with eight EU member countries that border the Baltic Sea: Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland, and Sweden.

    Categorizing Eutrophic Systems

    Scientists have identified 415 dead zones worldwide. Hypoxic areas have increased dramatically during the past 50 years, from about 10 documented cases in 1960 to at least 169 in 2007. The majority of the world’s dead zones are located along the eastern coast of the United States, and the coastlines of the Baltic States, Japan, and the Korean Peninsula.

    As a result of the dramatic increase in dead zones, scientists have categorized coastal systems experiencing any symptoms of eutrophication.

    An area of concern is a coastal system that exhibits effects of eutrophication, such as elevated nutrient levels, harmful algal blooms, and negative changes in the benthic community. Areas of concern are at the most risk of developing hypoxia. Major concentrations of areas of concern are located along the western coast of Central and South America, and the coastlines of Great Britain and Australia. There are 233 areas of concern around the world.

    A system in recovery is one that once exhibited low oxygen levels and hypoxia, but is now improving. For example, the Black Sea once experienced annual hypoxic events, but is now in a state of recovery. Others, like Boston Harbor in the United States and the Mersey Estuary in the United Kingdom, also have improved water quality. These are the results of better industrial and wastewater controls. There are only 13 coastal systems in recovery around the world.

    dead zone
    The dead zone in the Gulf of Mexico is most dramatic near the delta of the Mississippi River.

    Natural Dead Zones
    Not all dead zones are caused by pollution. The largest dead zone in the world, the lower portion of the Black Sea, occurs naturally. Oxygenated water is only found in the upper portion of the sea, where the Black Sea's waters mix with the Mediterranean Sea that flows through the shallow Bosporus strait.

  • Term Part of Speech Definition Encyclopedic Entry
    agriculture Noun

    the art and science of cultivating the land for growing crops (farming) or raising livestock (ranching).

    Encyclopedic Entry: agriculture
    algae Plural Noun

    (singular: alga) diverse group of aquatic organisms, the largest of which are seaweeds.

    algal bloom Noun

    the rapid increase of algae in an aquatic environment.

    aquaculture Noun

    the art and science of cultivating marine or freshwater life for food and industry.

    aquatic Adjective

    having to do with water.

    area of concern Noun

    aquatic ecosystem that exhibits effects of eutrophication, such as elevated nutrient levels, harmful algal blooms, and negative changes in the benthic community.

    atmosphere Noun

    layers of gases surrounding a planet or other celestial body.

    Encyclopedic Entry: atmosphere
    bacteria Plural Noun

    (singular: bacterium) single-celled organisms found in every ecosystem on Earth.

    benthic Adjective

    having to do with the bottom of a deep body of water.

    blue-green algae Noun

    type of aquatic bacteria (not algae) that can photosynthesize light to create energy. Also called cyanobacteria and (in freshwater habitats) pond scum.

    carbon dioxide Noun

    greenhouse gas produced by animals during respiration and used by plants during photosynthesis. Carbon dioxide is also the byproduct of burning fossil fuels.

    coastline Noun

    outer boundary of a shore.

    cod Noun

    popular food fish native to the North Atlantic Ocean.

    coral Noun

    tiny ocean animal, some of which secrete calcium carbonate to form reefs.

    coral reef Noun

    rocky ocean features made up of millions of coral skeletons.

    corridor Noun

    hallway, or connecting passage of land.

    creek Noun

    flowing body of water that is smaller than a river.

    curb Verb

    to restrain or control.

    cyanobacteria Noun

    type of aquatic bacteria that can photosynthesize light to create energy. Also called blue-green algae (even though it is not algae) and (in freshwater habitats) pond scum.

    dead zone Noun

    area of low oxygen in a body of water.

    Encyclopedic Entry: dead zone
    decompose Verb

    to decay or break down.

    developed country Noun

    a nation that has high levels of economic activity, health care, and education.

    developing world Noun

    nations with low per-capita income, little infrastructure, and a small middle class.

    diversity Noun


    dominate Verb

    to overpower or control.

    economic Adjective

    having to do with money.

    ecosystem Noun

    community and interactions of living and nonliving things in an area.

    Encyclopedic Entry: ecosystem
    emit Verb

    to give off or send out.

    endanger Verb

    to put at risk.

    estuary Noun

    mouth of a river where the river's current meets the sea's tide.

    Encyclopedic Entry: estuary
    European Union Noun

    association of European nations promoting free trade, ease of transportation, and cultural and political links.

    eutrophication Noun

    build-up of sediment and organic matter in bodies of water, which may cause a change in the productivity of the ecosystem.

    fertilizer Noun

    nutrient-rich chemical substance (natural or manmade) applied to soil to encourage plant growth.

    filter feeder Noun

    aquatic animal that strains nutrients from water.

    fish farming Noun

    art and science of raising and harvesting fish and other seafood, such as shrimp or crabs.

    fossil fuel Noun

    coal, oil, or natural gas. Fossil fuels formed from the remains of ancient plants and animals.

    grass Noun

    type of plant with narrow leaves.

    harbor Noun

    part of a body of water deep enough for ships to dock.

    Encyclopedic Entry: harbor
    harmful algal bloom (HAB) Noun

    rapid growth of algae, bacteria, or other plankton that can threaten an aquatic environment by reducing the amount of oxygen in the water, blocking sunlight, or releasing toxic chemicals.

    hypoxia Noun

    condition of not having enough oxygen in a substance, such as water or blood.

    industry Noun

    activity that produces goods and services.

    inhabit Verb

    to live in a specific place.

    irrigation Noun

    watering land, usually for agriculture, by artificial means.

    Encyclopedic Entry: irrigation
    larva Noun

    a new or immature insect or other type of invertebrate.

    manure Noun

    animal excrement or waste used to fertilize soil.

    marine Adjective

    having to do with the ocean.

    marine mammal Noun

    an animal that lives most of its life in the ocean but breathes air and gives birth to live young, such as whales and seals.

    microbe Noun

    tiny organism, usually a bacterium.

    nitrogen Noun

    chemical element with the symbol N, whose gas form is 78% of the Earth's atmosphere.

    nutrient Noun

    substance an organism needs for energy, growth, and life.

    Encyclopedic Entry: nutrient
    overfish Verb

    to harvest aquatic life to the point where species become rare in the area.

    oxygen Noun

    chemical element with the symbol O, whose gas form is 21% of the Earth's atmosphere.

    penetrate Verb

    to push through.

    peninsula Noun

    piece of land jutting into a body of water.

    Encyclopedic Entry: peninsula
    phosphorus Noun

    chemical element with the symbol P.

    phytoplankton Noun

    microscopic organism that lives in the ocean and can convert light energy to chemical energy through photosynthesis.

    pollution Noun

    introduction of harmful materials into the environment.

    Encyclopedic Entry: pollution
    poultry Noun

    domesticated birds, such as chickens.

    red tide Noun

    the rapid, dense accumulation of algae or other plankton that contain red or brown pigments; also called algal bloom.

    runoff Noun

    overflow of fluid from a farm or industrial factory.

    Encyclopedic Entry: runoff
    seaweed Noun

    marine algae. Seaweed can be composed of brown, green, or red algae, as well as "blue-green algae," which is actually bacteria.

    sewage Noun

    liquid and solid waste material from homes and businesses.

    shellfish Noun

    any aquatic organism that has a shell or exoskeleton.

    sprat Noun

    small fish related to herring.

    system in recovery Noun

    aquatic ecosystem that once exhibited low oxygen levels, but is now improving.

    terrestrial Adjective

    having to do with the Earth or dry land.

    tide Noun

    rise and fall of the ocean's waters, caused by the gravitational pull of the moon and sun.

    Encyclopedic Entry: tide
    toxic Adjective


    wading bird Noun

    bird with long, thin legs adapted for walking and feeding in shallow water.

    water cycle Noun

    movement of water between atmosphere, land, and ocean.

    Encyclopedic Entry: water cycle
    zooplankton Plural Noun

    microscopic, heterotrophic organism that lives in the ocean.